Electricity and magnetism were long thought to be separate forces. It was not until the 19th century that they were finally treated as interrelated phenomena. In 1905 Albert Einsteinâs special theory of relativity established beyond a doubt that both are aspects of one common phenomenon. At a practical level, however, electric and magnetic forces behave quite differently and are described by different equations. Electric forces are produced by electric charges either at rest or in motion. Magnetic forces, on the other hand, are produced only by moving charges and act solely on charges in motion. Electric phenomena occur even in neutral matter because the forces act on the individual charged constituents. The electric force, in particular, is responsible for most of the physical and chemical properties of atoms and molecules. It is enormously strong compared with gravity. For example, the absence of only one electron out of every billion molecules in two 70-kilogram (154-pound) persons standing two metres (two yards) apart would repel them with a 30,000-ton force. On a more familiar scale, electric phenomena are responsible for the lightning and thunder accompanying certain storms. Electric and magnetic forces can be detected in regions called electric and magnetic fields. This book seeks to provide a qualitative understanding of electromagnetism as well as a quantitative appreciation for the magnitudes associated with electromagnetic phenomena.